Influence of nylon on the tensile strength of a polymer matrix composite material

Sandra Patricia Romero Nieto

Abstract


This work describes the mechanical stress behavior of composite materials made up of a polymer matrix of epoxy resin or polyester resin and reinforcements of: nylon fiber and combinations between fiberglass and nylon fiber. The composite material was evaluated regarding its mechanical stress behavior and its microstructure; results indicate that the highest tensile strength is achieved in the combination using epoxy resin as matrix and nylon fiber as reinforcement. The presence of fiberglass in the material diminishes tensile strength; given that the fiber-matrix interface does not prevail, as evidenced in the microstructural analysis and argued with the chemical bond taking place among the epoxy resin, nylon fiber, and the fiberglass silane. It is, likewise, established that upon increasing the epoxy resin content, mechanical stress strength increases and that said behavior is related with the hydrophilic nature of the fiber and the porosity in the material. Regarding ductility, it was noted that nylon favors slightly the increase of this property in the composite material.


Keywords


Composites, microstructure, nylon, resin, strength

Full Text:

PDF HTML

References


A. Tejeda-Ochoaa, J. A. Garc y J. A. Bencomo Cisneros, «Characterization of Kevlar-29 fibers by tensile tests and nanoindentation,» Journal of Alloys and Compounds, vol. 536, p. 456–459, 2012.

M. H. Lafitte y A. R. Bunsell, «The fatigue behaviour of Kevlar-29 fibres,» Journal of Materials Science, vol. 17, pp. 2391-2397, 1982.

J. Heinecke, «De la fibra a la armadura,» la Tecnología de Aplicación de ley, pp. 80-85, 2007.

M. Karahan, Comparación de la palabra capacidad de absorción de RENDIMIENTO balístico y la Energía de las telas de aramida TEJIDAS y unidireccionales, 2008, pp. 718-730.

«Close focus research. Ballistic standards,» 23 (23/07/2014 - 09:05 p.m 2014. [En línea]. Available: http://www.closefocusresearch.com/ballistic-standards. [Último acceso: 23 09 2014].

B. L. Lee, T. F. Walsh, S. T. Won . y H. M. Patts, «Penetration failure mechanisms of armor- grade fiber composites under impact,» J Compos Mate, vol. 35, nº 18, pp. 1605-1633, 2001.

S. Bazhenov, «Energy dissipation portions in the aramid fabric bulletproof,» J Mater Sci, vol. 32, pp. 4167-4173, 1997.

H. I. L Wagner, Lightweight Ballistic Composites: Military and Law-Enforcement Applications, USA: Ashok Batnagar.

O. A. R y H. M. H., «Effect of different construction designs of aramid fabric on the ballistic performances,» Materials and Design, vol. 44, p. 407–413, 2013.

J. Portocarrero y J. Maldonado Villa, «SISTEMAS DE PROTECCIÓN BALÍSTICA BASADOS EN MECANISMOS DE AMARRE DE FIBRA DE VIDRIO,» Asociación Colombiana de Facultades de Ingenería ACOFI, 2013. [En línea]. Available: http://www.acofipapers.org/index.php/acofipapers/2013/paper/view/165. [Último acceso: 26 06 2014].

A. International, ASTM D695 : Standard Test Method for Compressive Properties of Rigid Plastics, ASTM, 2008.

V. Vela, M. Cinta y S. Alvarez Blanco, Main commercial polymers, Valencia: Editorial de la UPV.

N. R., P. D. K. y N. Muraleedharan, «Development of coir pith/nylon fabric/epoxy hybrid composites: Mechanical and ageing studies,» Materials and Design, vol. 54, p. 644–651, 2014.

M. Awaid, K. Abdul, B. A. Abu y K. Noorunnisa, «Chemical resistance, void content and tensile properties of oil palm/jute fiber reinforced polymer hybrid composites,» Mater Des, vol. 32, p. 1014–1019, 2011.

D. Askeland, F. Pradeep y W. Wendelin, The science and engineering of materials, Jefferson City: Global Engineering:, 2010.




DOI: http://dx.doi.org/10.18180/tecciencia.2014.16.9

Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 TECCIENCIA Journal