Controller optimization for a solar tracking system using differential evolution

Helbert Eduardo Espitia Cuchungo, Fabio Emiro Sierra Vargas


This paper details the design and implementation of two analog controllers for the solar tracker located in the thermal power plant laboratory at the Universidad Nacional de Colombia. In this study we used differential evolution for the optimization of the controllers. In addition to the design of the controllers, it is possible with this approach to observe the characteristics of this bio-inspired algorithm. As a result, we first present the optimization process and subsequently the dynamic response of the controllers implemented.


Differential evolution; Control; Optimization; Solar power

Full Text:



F. Sierra, F. Mejia y E. Caro, Tecnologias para el aprovechamiento de la energia solar, Bogotá: Universidad Nacional de Colombia, 2008.

S. Lakeou, E. Ososanya, O. Latigo, W. Mahmoud, G. Karanga y W. Oshumare, «Design of a low- cost digital controller for a solar tracking photo-voltaic (pv) module and wind turbine combination system,» de 21st European Photovoltaic solar energy conference, Dresden, 2006.

D. Kang, A. Martinez y E. Chaparro, «solar tracker system based on a digital heuristic controller,» de ieee trondheim powertech, trondheim, 2011.

B. Plesz, P. Sági y T.-h. V., «Enhancement of solar panels power generation by the usage of solar tracking.,» proceedings of ecopole, vol. 3, nº 1, pp. 15-22, 2009.

M. Khan, S. Tanzil, R. Rahman y S. Alam, «Design and construction of an automatic solar tracking system,» de Presented at the international conference on electrical and computer engineering (icece), Daca., 2010.

H. E. Cuchango y F. Sierra, «Optimization of an analog controller for a solar tracker using genetic algorithms and particle swarm optimization,» de presented at the ieee international symposium on alternative energies and energy quality (sifae), Barra, 2010.

H. E. Espitia y F. Sierra, «Diseño e implementación de controladores análogos para un seguidor solar,» Visión electrónica., vol. 7, nº 1, pp. 118-132, 2013.

K. Passino, «Biomimicry of bacterian foragin for distributed optimization and control,» IEEE control systems., vol. 22, nº 3, pp. 52-67, 2002.

M. Birattari, P. Pellegrini y M. Dorigo, «On the

invariance of ant colony optimization,» IEEE transactions on evolutionary computation, vol. 11, nº 6, pp. 732-342, 2007.

M. Dorigo, M. Birattari y T. Stützle, «Ant colony optimization. Artificial ants as a computational intelligence technique,» IEEE computational intelligence magazine, vol. 1, nº 4, pp. 28-39, 2006.

Zecchin, A. C; Simpson, A.; Maier, H.; Nixon, J., «Parametric study for an ant algorithm applied to water distribution system optimization,» IEEE transactions on evolutionary computation, vol. 9, nº 2, pp. 175-191, 2005.

S. Thakoor, J. Morookian, J. Chahl, B. Hine y S. Zornetzer, «Bees: exploring mars with bioinspired technologies,» IEEE computer, vol. 37, nº 9, pp. 38-47, 2004.

T. S. P. Lim y H. Haron, «Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions,» de IEEE conference on open systems (icos), Kunching, 2013.

R. M. Storn y K. Price, «Differential evolution a simple and efficient heuristic for global optimization over continuous spaces,» Journal of global optimization., vol. 11, nº 4, pp. 341-359, 1997.

K. V. Price, R. M. Storn y J. A. Lampinen, Differential evolution: a practical approach to global optimization, Germany: Springer-verlag, 2005.

K. Ogata, ingeniería de control moderna, cuarta edición., Madrid: Pearson prentice hall, 2003.

C. T. Chen, Analog and digital control system design, fort worth: saunders college publishing, 2003.



  • There are currently no refbacks.

Copyright (c) 2015 TECCIENCIA