Determination of the probability and rate of corrosion on reinforced concrete specimens through a remote corrosion monitoring system

Fredy David Bernal Castillo, Guillermo Roa Rodríguez, Carlos Felipe Cabrera Cabrera, Nicolas Sierra Melo, Willian Arnulfo Aperador Chaparro


In this paper, we present the design and construction of a remote monitoring system for determining the probability and rate of corrosion of rebar embedded in concrete. We use the ASTM standard C876 technique for the probability of corrosion and the Linear Polarization Resistance method to indirectly obtain the rate of corrosion. The system consists of a communication module using GSM and GPRS cellular networks which provide remote measurements. The device was used to evaluate corrosion with reference electrodes of copper/copper sulfate and graphite on Type I Portland cement specimens of 15cm in diameter and 30cm in length. The results of the measurements were compared to a commercial system, revealing similar values to the data obtained in the field and the laboratory.


Corrosion Monitoring; Half Cell Potential; Linear Polarization Resistance; Reinforced Concrete; Rebar corrosion

Full Text:



Pradhan B, Bhattacharjee B. (2009) Performance evaluation of rebar in chloride contaminated concrete by corrosion rate. En: Construction and Building Materials, Volume 23,: 2346-2356.

Almusallam AA. (2011) Effect of degree of corrosión on the properties of reinforcing Steel bars. En: Construction and Building Materials 2001, volume 15, 361-368.

Tang F, Chen G, Brow R., Volz J, Koenigstein M. (2012) Corrosion resistance and mechanism of steel rebar coated with three types of enamel. En: Corrosion. Science, volume 59, 57-168

Pradhan B, Bhattacharjee B. (2009) Performance evaluation of rebar in chloride contaminated concrete by corrosion rate. En: Construction and Building Materials, Volume 23, 2346-2356.

Roa-Rodríguez G, Aperador W, Delgado A. (2013) Calculation of chloride penetration profile in Concrete Structures. En: International Journal of Electrochemical Science, volume 8, 5022-5035.

Aperador, W., Delgado, A., Vera, E. (2011) “Monitoreo mediante EIS del acero embebido en un concreto de escoria activada alcalinamente expuesto a carbonatación”. Rev. ing. constr. 2011, vol.26, No.1, pp. 81-94.

Aperador W., Mejía de Gutiérrez R., Bastidas D.M., (2009). “Steel corrosion behaviour in carbonated alkali-activated slag concrete”, Corrosion Science, Vol. 51, No. 9, pp. 2027-2033

Balayssac J.P., Détriché Ch.H., Grandet J. (1995). “Effects of curing upon carbonation of concrete”. Construction and Building Materials, Vol. 9, No 2, pp. 91-95.

Aperador W. Vera E. Mejía de Gutierrez R. (2012). “Corrosion behavior of steel bar embedded in alkali-activated slag concrete subjected to carbonation and chloride attack”. Dyna rev.fac.nac.minas [online]. Vol.79, No 171, pp. 80-87.

Roa Rodriguez, G., Aperador Chaparro, W., Vera Aravena, R.. SOFTWARE PARA EL CÁLCULO DE LA VELOCIDAD DE DETERIORO DE LOS HORMIGONES SOMETIDOS A CARBONATACIÓN (SOFTWARE TO CALCULATE THE RATE OF DETERIORATION OF CONCRETE EXPOSED TO CARBONATION). Revista Latinoamericana de Metalurgia y Materiales, 2014, 34(1): 45-54. Disponible en: . Fecha de acceso: 02 oct. 2014.

HA WONG, S., VELI, S. Corrosion Monitoring of Reinforced Concrete Structures - A Review. International Journal of Electrochemistry Science, v. 2, p. 1 – 28, Jan. 2007.



  • There are currently no refbacks.

Copyright (c) 2015 TECCIENCIA