Tool for Monitoring Hillslope Stability Considering Precipitation Data

Carlos Arturo Peña Rincón, Hermes Martinez

Abstract


This work presents a methodology applied to the monitoring of slope stability in a rural area in Manizales, using the hillslope-storage Boussinesq (HSB) partial differential equation. This was applied with theoretical information of geotechnical parameters, such as porosity, hydraulic conductivity, thickness and data obtained from indirect measures such as the angle of the hillslope, width of the hillslope, profile of the hillslope and precipitation. In this work, the HSB equation was solved with the finite differences method by applying the python programming in four days of precipitation. The precipitation was reported by the EMAS meteorological station. The result was the saturation curve and its safety factor for each daily record of precipitation in each one of the scenarios given, when varying depth along the hillslope. This methodology can contribute to the monitoring of hillslopes located in rural areas as long as the values of the geotechnical parameters are adjusted, enabling to add to the efforts aimed at an early warning system for the hazard of landslides.


Keywords


HSB Equation, landslides, safety factor.

Full Text:

PDF

References


Lumb, P, Slope failure in Hong Kong. Q.J. Eng. Geol. 8, p31-65. 1975.

Ruth Mayorga Márquez. Determinación de umbrales de lluvia Detonante de deslizamientos en Colombia, tesis, Universidad Nacional de Colombia. Bogotá. 2003.

Narvaez G., Lean G. Caracterización y zonificación climática de la región andina. Meteorológica. Colombia 4:1-8, ISSN 0124-6984. Bogotá 2001.

Castellanos R. González A. Relaciones entre la lluvia anual y la lluvia crítica que dispara movimientos en masa. IX Jornadas Geotécnicas de la Ingeniería Colombiana. Bogotá. P 462-470. 1996.

J.J. Vélez, F. Mejia, N.D. Duque-Méndez y M. Orozco Alzate. Red de monitoreo climático para dar apoyo a la prevención y atención de desastres en Manizales, Colombia. Convención Trópico, La Habana, 2012.

Terlien, Mark Theodoor Johaness. Modelling spatial and temporal variontions in rainfall- triggered landslides. Enschede (Holanda), Trabajo de doctorado (Ingeniero Geografo). International Institute for Aerospace survey and Earth Sciences(ITC).1996.

Jaime I. Velez, Manuel R. Villaraga, Oscar D. Alvarez, Jorge E. Alarcón, Felipe Quintero. Modelo distribuido para determinar la susceptibilidad al deslizamiento superficial por efecto de tormentas intensas y sismos. Boletin de las ciencias de la tierra, Universidad Nacional de Colombia, Sede Medellín, No 17. 2005.

M. Casadel, W. E. Dietrich, N. L. Miller. Testing a model for predicting the timing and location of shallow landslide initiation in soil.- mantled landscapes Earth Surface Processes and Landforms, 28, p 925-950. 2003.

Dietrich W.E, Reiss R, Hsu M, Montgomery DR. A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrolological Process V 9, p 383-400. 1995.

Iverson, R.M. landslide triggering by rain infiltration, Water Resources Research, V 36,No 7, p1897-1910. 2000.

Luis R. Vásquez V. Modelación Numérica de la Respuesta Hidrológico de Taludes, Masters Thesis, Universidad Nacional de Colombia, Bogotá. 2008.

Aristizabal E., H. Martinez, J.I. Velez. Una revisión sobre el estudio de movimiento en masa detonada por lluvias. Rev Acad Colombia. Ciencias. 34 (131) p 209-227. 2010.

Peña-Rincón, C.A. 2017. Datos de Precipitación con el modelo HSB para pronóstico de deslizamiento de suelos superficiales. Boletín de Geología.39(2):49-56.

Th. W. J. Van Asch, J. Buma, L.P.H. Van Beek. A vie won some hydrological triggering systems in landslides. Geomorphology V 30, p 25-32, 1999.

G.B. Crosta, P. Frattini. Distributed modelling of shallow landslides triggered by intense rainfall, Natural hazards and Earth System Sciences, V 3, p 81-93.2003.

Yin Fan, Rafael L. Bras. Analytical solutions to hillslope subsurface storm flow and saturation overland flow. Water Resources Research, V 34,No 4, p 921-927. 1998.

Peter Troch, Emiel Van Loon, Arno Hilberts. Analytical solutions to a hillslope-storage kinematic wave equation for subsurface flow, Advances in Water Resources. V 25, p 637-649. 2002.

Evans, I. S., An integrated system of terrain analysis and slope mapping, Zeitschrift fur Geomorphologie, Supplement and,V 36, p 274-295. 1980.

Stefano CD. Ferro V. Porto P. Tusa G. Slope curvature influence on soil erosion and deposition processes. Water Resour Res; 36(2), p 607-17, 2000.

Peter Troch, Claudio Paniconi, E. Emiel Van Loon. Hillslope-Storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resource Research, Vol 39, No 11. P 1316, doi 10.1029/2002WR001728. 2003.

Braja M. Das. Principles of Geotechnical Engineering, 6th Edition, Thomson India, p 480. 2006.

Fabio Vittorio De Blasio. Introduction to the physics of Landslides. Springer New York, P 408. 2011.

Wu, W., and R. C. Sidle, A distributed slope stability model for steep forested basins, Water Resour. Res., 31(8), p 2097-2110. 1995.

Van Beek, H., Assessment of the Influence of Changes in Land Use and Climate on Landslide Activity in a Mediterranean Environment. PhD Thesis, Utrecht University, 2002.

A. Talebi, Peter A.Troch, Remko U.,A steady-state analytical slope stabilitiy model for complex hillslopes, Hydrological Processes, V22, p546-553. 2008.

A. Talebi, Remko Uijlenhoet Peter A.Troch, Soil moisture storage and hillslope stability, Natural hazards and Earth System sciences, v7,p523-534. 2007.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 TECCIENCIA