Comparison and validation of turbulence models in the numerical study of heat exchangers

Juan Gonzalo Ardila Marin, Diego Andrés Hincapié Zuluaga, Julio Alberto Casas Monroy


This study aims to validate numerical models for heat exchangers developed with the commercial package ANSYS® comparing the results with data published in the literature. The methodology was based on identification of programs, languages, mathematical and numerical models employed by other researchers. Geometries were developed with SolidEdge® and DesignModeler®, discretization meshes with Meshing® and subsequent configuration of standard k-ɛ and k-ω models with Fluent® and CFX®. For internal flow in concentric smooth straight tube exchangers, we recreated the predicted results with Nusselts varying between 100 and 250 and Reynolds regimes between 12*103 and 38*103 The study of internal flow in curved corrugated tube exhibited a great approach of results predicted with the numerical correlation of Zachar with Nusselt numbers in the range of 15-70 for Dean variations between 1*102 and 11*102 in laminar flow. Finally, Nusselt variations between 60 and 275 with Dean Numbers between 1*103 and 9*103 for laminar, transitional and turbulent fully developed flow regime. The study shows the increase of heat flux associated with the change in heat exchangers geometry. Meanwhile, exhibits how computer numerical models can recreate realistic process conditions and thermo-fluid simulation by appropriately configuring systems.


Turbulence; SIMPLE; CFD; Nusselt; ANSYS

Full Text:



V. Kumar, S. Saini, M. Sharma y K. Nigam, «Pressure drop and heat transfer study in tube-in-tube helical heat exchanger,» Chemical Engineering Science, vol. 61, pp. 4403-4416, 2006.

J. Jayakumar, S. M. Mahajani, J. Mandal, P. K. Vijayan y R. Bhoi, «Experimental and CFD estimation of heat transfer in helically coiled heat exchangers,» chemical engineering research and design, vol. 86, pp. 221-232, 2008.

J. Jayakumar, S. M. Mahajani, J. Mandal, K. N. Iyer y P. K. Vijayan, «Thermal hydraulic characteristics of air–water two-phase flows in helical pipes,» chemical engineering research and design, vol. 88, pp. 501-512, 2010.

R. Kharat, N. Bhardwaj y R. Jha, «Development of heat transfer coefficient correlation for concentric helical coil heat exchanger,» International Journal of Thermal Sciences, vol. 48, pp. 2300-2308, 2009.

I. Conte y X. F. Peng, «Numerical and experimental investigations of heat transfer performance of rectangular coil heat exchangers,» Applied Thermal Engineering, vol. 29, pp. 1799-1808, 2009.

H. P. Neopane, Sediment Erosion in Hydro Turbines, Norwegian University of Science and Technology, 2010.

I. Di Piazza y M. Ciofalo, «Numerical prediction of turbulent flow and heat transfer in helically coiled pipes,» International Journal of Thermal Sciences, vol. 49, pp. 653-663, 2010.

A. Zachár, «Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall,» International Journal of Heat and Mass Transfer, vol. 53, pp. 3928-3939, 2010.

M. M. Aslam Bhutta, N. Hayat, M. Hassan Bashir, A. Rais Khan, K. Naveed Ahmad y S. Khan, «CFD applications in various heat exchangers design: A review,» Applied Thermal Engineering, vol. 32, pp. 1-12, 2012.

X. Cheng y P. Han, «A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms,» International Journal of Heat and Fluid Flow, vol. 21, pp. 463-467, 2000.

D. S. Jang, R. Jetli y S. Acharya, «Comparison of the PISO, SIMPLER, and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems,» Numerical heat transfer, vol. 10, pp. 209-228, 1986.


J. R. Welty, C. E. Wicks y R. E. Wilson, Fundamentos de Transferencia de Momento, Calor y Masa, 2 ed., México: Limusa Wiley, 2006.

A. Piña Ortiz, Estudio numérico y experimental de la transferencia de calor en una cavidad vertical cerrada alargada, Sonora, México: Universidad de Sonora, 2011.

G. Eggenspieler, «Turbulence Modeling,» de Turbulence Modeling, ANSYS, Inc., 2012.

B. E. Launder y D. B. Spalding, «The numerical computation of turbulent flows,» Computer Methods in Applied Mechanics and Engineering, vol. 3, nº 2, pp. 269-289, march 1974.

J. R. Toro Gómez, Dinámica de Fluidos con introducción a la Teoría de la Turbulencia, Bogotá, Colombia: Ediciones Uniandes - Universidad de los Andes, 2006.

T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang y J. Zhu, «A new k-e eddy viscosity model for high Reynolds number turbulent flows,» Computers & Fluids, vol. 24, nº 3, pp. 227-238, 1995.

N. A. Rodriguez Muñoz, Estudio numérico de la transferencia de calor con flujo turbulento en una cavidad alargada con ventilación, Sonora , México: Universidad de Sonora, 2011.

ANSYS, Inc., «ANSYS DesignModeler,» ANSYS, Inc., 2014. [En línea]. Available: [Último acceso: 2014].

ANSYS, Inc. , «ANSYS Meshing,» ANSYS, Inc. , 2014. [En línea]. Available: [Último acceso: 2014].

T. Craft, «,» School of Mechanical Aerospace and Civil Engineering, 12 2011. [En línea]. Available: [Último acceso: 02 2015].

M. Pirani, M. Da Silva y N. Manzanares, «Estudio comparativo entre el modelo de turbulencia k-e y el modelo algebráico del tensor de Reynolds,» Información Tecnológica, vol. 10, nº 4, pp. 253-260, 1999.

ANSYS, Inc., «Turbulence and Wall Function Theory,» de ANSYS CFX-Solver Theory Guide, Canonsburg, PA, ANSYS, Inc, 2012.

T. J. Rennie y V. G. Raghavan, «Effect of fluid thermal properties on the heat transfer characteristics in a double-pipe helical heat exchanger,» International Journal of Thermal Sciences, vol. 45, pp. 1158-1165, 2006.

M. Salimpour, «Heat transfer characteristics of a temperature-dependent-property fluid in shell and coiled tube heat exchangers,» International Communications in Heat and Mass Transfer, vol. 35, pp. 1190-1195, 2008.

T. L. Bergman, f. P. Incropera, D. P. DeWitt y A. S. Lavine, Introduction of heat transfer, John Wiley and Sons, 2011.


  • There are currently no refbacks.

Copyright (c) 2015 TECCIENCIA