Images compression process in the radiological service unit as an infrastructure component in the colombian health model.

Lilia Edith Aparicio Pico, Julian Luciano Cardenas, Alexandra Maria López Sevillano


This article depicts the process of images compression for the Discrete Cosine Transform (DCT). By being one of the most significant transformations in the area of digital image compression the DCT transforms a block of data into a new set of values.

 This work presents a review of images compression applied to the field of health specifically for the radiology service, where the Discrete Cosine Transform (DCT) is used as the Inverted Discrete Cosine Transform (ICDT).  In this particular case, a rapid algorithm is used for DCT, which is figured out by applying the parallel arithmetic allowing the designed architecture to reach a better performance in software implementations.

 Firstly the different imaging modalities that are introduced into the compression system to obtain results through simulations in Mathlab are included here. Subsequently, based on the results the application of radiology service is seen within the infrastructure component in the health sector and finally an analysis of production from 2011 to 2014 of hospitals is observed.


Compression process development, health informatics, Discrete Cosine Transform (DCT), image processing, image compression, infrastructure in the causal model, infrastructure component, radiology.

Full Text:



Alan N. Steinberg; Bowman, Christopher L.; Blanco, Franklin E. (1999).”Revisions to the JDL Data Fusion Model”.

Avedis Donabedian.(2001).”Health Care Quality”.

Bronzino, J.D.(2000). “The Biomedical Engineering Handbook”, Boca Raton: CRC Press LLC.

Economical Commission for Latin America (CEPAL, 2012).” Equpping and Technology”.

European Commission (2009a).” Community Guidelines for the Application of Standards on State Assistance to the Fast Display of Wide Band Networks” Ofiical Journal of the European Union 2009/C 235/04.

Drogoul, a., Vanbergue, D. & Meurisse, T. (2003).”Multi-Agent Based Simulation: Where are the Agents”, in Sichman, J. S., Bousquet, F. & Davidsson, P. (eds.), Lecture Notes in Computer Science 2581. Proceedings of MABS 2002 Multi-Agent- Based Simulation, pp. 1-15. Bologna, Italy: Springer-Verlag.

Ferreres, L.A., García Rojo, M. & Puras Gil, A.M. (2001). “Telepathology Handbook” Pamplona: Club de Informática Aplicada de la Sociedad Española de Anatomía Patológica.

Processing.(2002), New Jersey: Prentice-Hall Inc.

Green, Donald and Alan Gerber. (2008). “Field Experiments and Natural Experiments.”

In Janet M. Box-Steffensmeier, Henry E. Brady, and David Collier, editors, The Oxford

“Handbook of Political Methodology” New York: Oxford University Press.

G. E. Oien,(1993). “L2-optimal attractor image coding with fast decoder convergence,” Ph.D. dissertation, Norwegian Univ. Sci. Technol., Trondheim, Norway.

Gilbert, N. (2004).”Agent-based social simulation dealing with complexity”. Centre

for Research on Social Simulation, University of Surrey.(2007).” Agent-Based Models. Quantitative Applications in the Social Sciences”. London: SAGE Publications.

Hesse, M. B. (1963).” Models and Analogies in Science”. London: Sheed and Ward.

Holt, L. & Jamison, M. (2009).” Broadband and contributions to economic growth”: Lessons from the US experience, Telecommunications Policy, 33, 575-581.

Joseph K. H. (2001).Health Managemente Information Systems.Editorial: Joan Sesma.

JTC1 Committee.(1990) “Digital compression and coding of continuous-tone still images,” Int. Org. Standardization ISO/IEC, JTC1 Commitee Draft, JPEG 8-R8.

Kohler, T. & Gumerman, G. J. (2000).” Dynamics in human and primate societies: Agent-based modeling of social and spatial processes”. New York: Oxford UniversityPress & Santa Fe Institute.

Kou, W.(1995).“Digital Image Compression: Algorithms and Standards”, Massachu-setts: Kluwer Academic Publishers.

Lebaron, B. (2000).”Agent Based Computational Finance: Suggested Readings and

Early Research”. Journal of Economic Dynamics & Control 24(5-7), pp. 679-702.

López paredes, A. & Hernández Iglesias, C. (2008).” Agent Based Modelling in

Natural Resource Management”. Insisoc. Spain. ISBN 978-84-205-4560-8.

Lyneis, J. M. & Ford, D. N. (2007). “System dynamics applied to project management:

A survey, assessment, and directions for future research”. System Dynamics Review

(2-3), pp. 157-189.

Mansury, Y. & Deisboeck, T. S. (2004).”Simulating the time series of a selected gene expression profile in an agent-based tumor model”. Physica D: Nonlinear Phenomena 196(1-2), pp. 193-204.

Mansury, Y., Kimura, M., Lobo, J. & Deisboeck, T. S. (2002).”Emerging Patterns in

Tumor Systems: Simulating the Dynamics of Multicellular Clusters with an Agent based Spatial Agglomeration Model”. Journal of Theoretical Biology 219(3), pp.343-370.

Martínez M. A., Jimenez A. J. R., Me-dina B. V., Azpiroz L. J.,(2003). “Los Sistemas PACS”.Universidad Autónoma de México.

Martin, M,(2004). “Compresión de Imagenes”, Universidad de Harvard USA.

Norberto, Figuerola (2013).” Gestión Del Conocimiento (Knowledge Management) Pirámide D-I-K-W”.

Organización Panamericana de la Salud/Organización Mundial de la Salud (OPS/OMS, 2013). “Modelo de salud”.

P. Lopez, P. Espeso, J. Medina and J. Drake.(2004).“Aplicaciones automatizadas en tiempo real basada en componentes software”.

Programa Regional Políticas Sociales en América Latina (SOPLA, 2012). “Forma parte de una serie de estudios del programa regional de políticas sociales de América Latina”.

Rosenbaum, Paul R. and Donald B. Rubin. (1983). “The Central Role of the Propensity Score in Observational Studies for Causal Effects.” Biometrika 70 (1): 41–55.

Sterman, J. D. (2000).” Business Dynamics”, Systems thinking and modeling for a complex world. McGraw Hill.

Salih Burak Gokturk, Carlo Tomasi, Bernd Girod, Chris Beaulieu,(2004). “Compresión de Imágenes Médicas con Base en Regiones de Interés ROI”, Departamento de Radiología Universidad de Stanford USA.

Secretaria Distrital de Salud- SDS (2013).”Programa de Reorganización, Rediseño y Modernización de Redes de Prestación de Servicios de Salud”.

Vicsek, T. (2002). “Complexity: The bigger picture”. Nature 418(6894), pp. 131-131.

Whitten, J, Bentley. L.D y K.C. Dittman (2004). “Sistem análisis & design methods citado por Fernández Vicenç, 2006: Desarrollo de sistemas de información: una metodología basada en el modelado”.

Y. Fisher,(1992). “A discussion of fractal image compression,” in Chaos and Fractals, Saupe D. H. O. Peitgen, H. Jurgens, Eds. New York: Springer-Verlagpp. 903–919.



  • There are currently no refbacks.

Copyright (c) 2015 TECCIENCIA