Incidence of using chicken fat based biodiesel on the performance of a 13.5 kWe compression ignition piston engine for power generation

Fabio Emiro Sierra Vargas, Manuel Antonio Montenegro, Favio Orlando Narvaéz Argoty

Abstract


New alternatives and feedstocks have been identified to overcome the impact caused by combustion of fossil fuels; some of them point on the promotion of second, third and fourth generation biofuels resulting from non-edible crops and other raw materials. The lack of information about the performance of engines used for power generation encumbers the use of chicken fat biodiesel in gensets in rural areas or other applications in which power generation is the main purpose. Therefore, this work aims to identify the incidence of using chicken fat biodiesel on the performance of a 13.45kWe internal combustion engine employed for power generation. The biodiesel was synthesized in lab conditions and afterwards fueled in the engine. Parameters such as the total electrical efficiency, heat rate, fuel consumption and the exhaust gas emissions are analyzed. A Lister TR2 diesel engine fixed to a Leroy Soner LSA 38 M/J electrical generator was employed. The chicken fat biodiesel was successfully produced in a lab-scale facility and afterward employed as biofuel blended with commercial biodiesel BPa7. The efficiency of the genset increases up to 38.79% with B22.5 higher than the 35.08% obtained for B0.  As a consequence of the fuel reduction and addition of a sustainable biofuel such as chicken-fat biodiesel the carbon footprint was also decreased; the CO2 released decreases about 2.9 kgCO2h-1 when the genset was operating at full capacity fueled with B22.5

Keywords


Renewable Energy; Chicken fat; Biodiesel; Energy efficiency; Carbon Footprint

Full Text:

PDF HTML

References


International Energy Agency, "World energy flow," IEA, 2015. [Online]. Available: http://www.iea.org/Sankey/#?c=World&s=Final consumption. [Accessed 05 08 2015].

PROEXPORT, "Biofuels investment in Colombia," Mincomercio, 2015. [Online]. Available: http://www.investincolombia.com.co/sectors/agribusiness/biofuels.html. [Accessed 07 08 2015].

F. Millo, B. K. Debnath, T. Vlachos, C. Ciaravino, L. Postrioti and G. Buitoni, "Effects of different biofuels blends on performance and emissions of an automotive disel engine," Fuel, vol. 159, pp. 614-627, 2015.

A. Ashraful, H. Masjuki, M. Kalam, I. Rizwanul Fattah, S. Imtenan , S. Shahir and H. Mobarak, "Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review," Energy Conversion and Management, vol. 80, pp. 202-228, 2014.

W. N. M. Wan Ghazali, R. Mamat, H. Masjuki and G. Najafi, "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, vol. 51, pp. 585-602, 2015.

E. Alptekin, M. Canakci and H. Sanli, "Biodiesel production from vegetable oil and waste animal fats in a pilot plant," Waste Management, vol. 34, no. 11, pp. 2146-2154, 2014.

W. Shin, J. Li, B. He, F. Yan, Z. Cui, K. Wu, L. Lin, X. Qian and Y. Cheng, "Biodiesel production from wsate chicken fat with low free fatty acids by an integrated catalytic process of composite membrane and sodium methoxide," Bioresource Technology, vol. 139, pp. 316-322, 2013.

E. Alptekin, M. Canakci, A. Necati Ozsezen, A. Turkcan and H. Sanli, "Using waste animal fat based biodiesels-bioethanol-diesel fuel blends in a DI diesel engine," Fuel, vol. 157, pp. 245-254, 2015.

American Society for Testing and Materials, "ASTM D2709 Standard Test Method for Water and Sediment in Middle Distillate Fuels by Centrifuge," West Conshohcken, 2014.

ISO, "ISO 3675:1998 Crude Petroleum and liquid petroleum products -- Laboratory determination of density -- Hydrometer method," 1998. [Online]. Available: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26326. [Accessed 12 06 2015].

American Society for Testing and Materiales, "D445-15 Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)," 2015. [Online]. Available: http://www.astm.org/Standards/D445.htm. [Accessed 20 05 2015].

American Society for Testing and Materials, "D1160-15 Standard Test Method for Distillation of Petroleum Products at Reduced Pressure," 2015. [Online]. Available: http://www.astm.org/Standards/D1160.htm. [Accessed 26 03 2015].

American Society for Testing and Materials, "D2500 Standard Test Method for Cloud Point of Petroleum Products," 2011. [Online]. Available: http://www.astm.org/Standards/D2500.htm. [Accessed 17 03 2015].

American Society for Testing and Materials, "D93 Standard Test Methods for Flash Point by Pensky-Marten Closed Cup Tester," 2015. [Online]. Available: http://www.astm.org/Standards/D93.htm. [Accessed 10 02 2015].

American Society for Testing and Materials, "D976 Standard Test Method for Calculated Cetane Index for Distillate Fuels," 2015. [Online]. Available: http://www.astm.org/Standards/D976.htm. [Accessed 15 04 2015].

Lister Petter, "TR2," 2015. [Online]. Available: http://www.lister-petter.com/p/power-water-solutions/4/lp-range/1/engines/58/tr2. [Accessed 20 06 2015].

C. A. Forero-Núñez, J. E. Arango and F. E. Sierra-Vargas, "Evaluación energética de un sistema de generación de 400 kWe en modo diesel-gas licuado de petróleo," Ingeniería Mecánica, vol. 17, no. 3, pp. 205-215, 2014.

GALIO indutrial develoment, "Model - SMART 200s," 2015. [Online]. Available: http://galio.com/smart-series/smart-2000x/. [Accessed 5 07 2015].

UPME, "Factores de emisión para los combustibles colombianos," 20003. [Online]. Available: https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAAahUKEwjh06-Hk8PIAhUGJh4KHR0nCik&url=http%3A%2F%2Fwww.siame.gov.co%2FPortals%2F0%2FFECOCupme.xls&usg=AFQjCNFThM9IcnWNHxi4bootAEliXy_CoQ. [Accessed 4 8 2015].

A. Ashraful, H. Masjuki, M. Kalam, I. Rizwanul Fattah, S. Imtenan, S. Shahir and H. Mobarak, "Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oil: A review," Energy Conversion and Management, vol. 80, pp. 202-228, 2014.

E. Alptekin and M. Canakci, "Characterization of the key fuel properties of methyl ester-diesel fuel blends.," Fuel, vol. 88, no. 1, pp. 75-80, 2009.

B. R. Moser, "Influence of blending canola, palm, soybean, and sunflower oil methyl ester on fuel properties of biodiesel," Energy & fuels, vol. 22, no. 6, pp. 4301-4306, 2008.

A. P. Vyas, N. Subrahmanyam and P. A. Patel, "Production of biodiesel through transesterification of Jathropha oil using KNO3/Al2O3 solid catalyst," Fuel, vol. 88, no. 4, pp. 625-628, 2009.

Natural Resources Canada, "RETScreen International product database," 2015. [Online]. Available: http://www.retscreen.net/ang/d_data_p.php. [Accessed 10 08 2015].

S. Lee and T. Y. Kim, "Feasibility study of using wood pyrolysis oil-ethanol blended fuel with diesel pilot injection in a diesel engine," Fuel, vol. 162, pp. 65-73, 2015.

H. C. Ong , H. Masjuki, H. Mahlia, A. Silitonga, W. Chong and T. Yusaf , "Engine performance and emissions using Jatroha curcas, ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, vol. 69, pp. 427-445, 2014.

H. An, W. Yang, S. Chou and K. Chua, "Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions," Applied Energy, vol. 99, pp. 363-371, 2012.

A. Parlak, V. Ayhan, I. Cesur and G. Kökkülünk, "Investigation of the effects of steam injection on performance and emissions of a diesel engine fuelled with tobacco seed oil methyl ester," Fuel Processing Technology, vol. 116, pp. 101-109, 2013.

M. Gumus and S. Kasifoglu, "Performance and emissions evaluation of a compression ignition engine using biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel," Biomass and bioenergy, vol. 34, no. 1, pp. 134-139, 2010.

H. Saleh, "Effect of exhaust gas recirculation on diesle engine nitrogen oxide reduction operating with jojoba methyl ester," Renewable Energy, vol. 34, no. 10, pp. 2178-2186, 2009.

D. Rakopoulos, C. Rakopoulos, E. Giakoumis, A. Dimaratos and M. Founti, "Comparative environmental behavior of bus engine operating on blends of diesel fuel with four straight vegetable oild of Greek origin: Sunflower, cottonseed, conr and olive," Fuel, vol. 90, no. 11, pp. 3439-3446, 2011.

S. Vedharaj, R. Vallinayagam, W. Yang, S. Chou, K. Chua and P. Lee, "Experimental and finite element analysis of a coated diesel engine fueled by cashew nut shell liquid biodiesel," Experimental Thermal and Fluid Science, vol. 53, pp. 259-268, 2014.

A. Dhar, R. Kevin and A. K. Agarwal, "Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine," Fuel Processing Technology, vol. 97, pp. 118-129, 2012.

A. Ramadhas, C. Muraleedharan and S. Jayaraj, "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, vol. 30, no. 12, pp. 1789-1800, 2005.

G. Tüccar, T. Özgür and K. Aydin, "Effect of disel-microalgae biiodiesel-butanol blends on performance and emission of diesel engine," Fuel, vol. 132, pp. 47-52, 2014.

R. Behcet, "Performance and emission study of waste anchovy fish biodiesel in a disel engine," Fuel Processing Technology, vol. 92, no. 6, pp. 1187-1194, 2011.

C. Westbrook, W. J. Plitz and H. J. Curran, "Chemical kinetic modeling study of th eeffects of oxygenated hydrocarbons on Soot Emissions from Diesel Engines," The journal of physical chemistry A, vol. 110, no. 21, pp. 6912-6922, 2006.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2015 TECCIENCIA