Low-Cost Electronic Opening Control Valve

Elkin E Henao-Bravo, David Marquez-Viloria, Javier Castrillón Forero, Jhon Alexander Isaza Hurtado, José D Arroyave-Gómez, Juan F Ramírez-Correa


Automation and industrial control are determined by different elements (hardware and software) that permit modifying the value of the variables to optimize processes. Control valves are in charge of action and control and are the only element in the control loop that interacts in invasive manner on the currents of the process, that is, they are an active part of the dynamics of the process. Control valves are generally the most costly elements of the control loop and are not regularly at the reach of academia or small and mid-sized industry. This project developed a functional prototype in hardware and software of a control valve, employing devices from the local market, thus, obtaining a low-cost system compared to some manufacturers of control valves with similar features. The project was divided into four stages: i) mechanical design of the coupling and support of the motor and valve, ii) prototype and manufacture of the mechanical elements, iii) develop the electronic system, iv) coupling and test of the analog control electro-valve. A test bench evaluated the behavior of the gate valve and rapid opening behavior was obtained in the gate valve, with saturation at 21.64 L/min and dead zone of 1 V, approximately.


Válvula de control; bajo costo; acople mecánico; control electrónico

Full Text:



Fisher Controls International, Control Valve Handbook, Fourth., vol. 40, no. 6. USA, 2005.

A. Creus, Instrumentacion industrial, Alfaomega . 2010.

Y. Nishioka, K. Suzumori, T. Kanda, and S. Wakimoto, “Multiplex pneumatic control method for multi-drive system,” Sensors Actuators A Phys., vol. 164, no. 1–2, pp. 88–94, Nov. 2010.

M. Salloom, “Intelligent Magneto-Rheological Fluid Directional Control Valve,” Int. J. Innov. Manag. Technol., vol. 4, no. 4, pp. 10–13, 2013.

M. Y. Salloom and Z. Samad, “Magneto-rheological directional control valve,” Int. J. Adv. Manuf. Technol., vol. 58, no. 1–4, pp. 279–292, May 2011.

W. Li, W. Ling, S. Liu, J. Zhao, R. Liu, Q. Chen, Z. Qiang, and J. Qu, “Development of systems for detection, early warning, and control of pipeline leakage in drinking water distribution: A case study,” J. Environ. Sci., vol. 23, no. 11, pp. 1816–1822, 2011.

S. Galanopoulos, N. Chatzidai, V. Melissinaki, A. Selimis, C. Schizas, M. Farsari, and D. Karalekas, “Design, Fabrication and Computational Characterization of a 3D Micro-Valve Built by Multi-Photon Polymerization,” Micromachines, vol. 5, no. 3, pp. 505–514, Aug. 2014.

N. C. G. Guerrero Meza, “Ingenieria e implementación de un prototipo parcial de una válvula de control de flujo,” Universidad de Pamplona, 2006.

C. V. Moran and R. A. Garcia Vergara, “Diseño, construcción y caracterización de una válvula de control de procesos para gas conbustible,” Universidad Industrial de Santander, 2004.

Y. Wang, T. Megli, M. Haghgooie, K. S. Peterson, and a. G. Stefanopoulou, “Modeling and Control of Electromechanical Valve Actuator,” SAE 2002-01-1106, Mar. 2002.

M. A. Reyes and E. Hernández, “Dispositivo electromecánico para accionamiento e implementación de una válvula de control en lazo abierto para una planta térmica,” Rev. inge@uan, vol. 2, pp. 48–51, 2011.

DOI: http://dx.doi.org/10.18180/tecciencia.2017.22.10


  • There are currently no refbacks.

Copyright (c) 2017 TECCIENCIA