Time and spectral study of the internal structure of long GRBs with z close to 1

Jonathan Quirola, Nicolas Vasquez


We investigated the internal structure of a sample of 5 long GRBs detected by Swift satellite with z close to one. First, we determined the spectral lag applying an exponential model (Norris model, 2005) [2]. We fitted the pulses with Norris model according to the sensitivity of the BAT detector (15-150 KeV). We concluded that high energy photons arrived before low energy photons in 88% of lags. Moreover, spectral analysis in regions of 1 second width was performed, and the temporal evolution of spectral parameters such as photon index and energy peak, additionally we determined that the contribution of the synchrotron radiation inside the burst is important for the 45% of sample. Finally, we investigated correlation between spectral lag and photon index or luminosity. We concluded that spectral lag and luminosity are anticorrelated, nevertheless spectral lag and photon index are not correlated. We used three spectral models: power law, cut-o_ power law and Band model.


Gamma ray burst: spectral lag, prompt emission,

Full Text:



M. Arimoto et al. Spectral-Lag Relation in GRB Pulses Detected with HETE-2, Astronomical Society of Japan 62, 487-499, 2010.

J.P. Norris, J.T. Bonnell et Al. Long-Lag, Wide-Pulse Gamma Ray Burst, The Astrophysical Journal, 2005.

B. Zhang and P. Mészáros. Gamma-Ray Burst: Progress, problems and prospects, International Journal of Modern Physics A, Vol. 19, No. 15 2385{2472, 2004.

T. Piran. The physics of gamma-ray bursts, International Journal of Modern Physics A Vol. 19, Reviews of Modern Physics, Volumen 76, 2004.

J. Hakkila, et al. Correlations between Lag, Luminosity, and duration in Gamma-ray Burst pulses. The Astrophysical Journal, 2008.

B. Zhang et al.. Discerning the Physical Origins of Cosmological Gamma-Ray Burst Based on Multiple Observational Criteria: The Cases of Z = 6.7 GRB 080913, Z = 8.3 GRB 090423, and Some Short/Hard GRBs. The Astrophysical Journal, Volume 703, 2009.

K. Arnaud et al. Xspec an X-Ray Spectral Fitting Package, HEASARC Astrophysics Science Division, 2014.

G. Rybicki. Radiative Processes in Astrophysics, Wiley-Vch, 1979.

D.H. Perkins. Particle Astrophysics, Oxford University, 2009.

D. Andrade, y N. Vásquez. Distribución de tiempos de emisión con correcciones cosmológicas de los GRBs largos, Proyecto de titulación, Escuela Politécnica Nacional, 2014.

G. Ghirlanda. Spectral evolution of GRBs: new insights into their physics, Thesis submitted for the degree of Doctor Philosophiae", Scuola Internazionale Superiore Di Avanzati, 2002.

R. Basak, A. R. Rao. Time-resolved spectral study of Fermi GRBs having single pulses, Astronomical Society, 2014.

G. Ghisellini. Gamma ray burst: basic facts and ideas, Proceedings IAU Symposium No. 275, 2010.

A. Baquero, y N. Vásquez. Clasificación de ráfagas de rayos gamma largas usando lag espectral y ACF con correcciones cosmológicas, Proyecto de titulación maestría en física, Escuela Politécnica Nacional, 2014.

P. Mészáros. The high energy Universe, Cambridge university press, 2010.

T. Ukwatta. Spectral lags and variability of Gamma-ray Bursts in the Swift era, PhD tesis, The George Washington University, 2010.

R. D. Preece, et al. The Synchrotron Shock Model Confronts a “Line of Death” in the BATSE Gamma-Ray Burst Data, The Astrophysical Journal, 506, L23, 1998.

E. Cohen, J. I. Katz1 , T. Piran, R. Sari, R. D. Preece & D. L. Band. Possible Evidence for relativistic Shocks in Gamma-Ray Bursts, The Astrophysical Journal, 488, 330, 1997.

T. N. Ukwatta et al. Spectral Lags and the Lag-Luminosity Relation: An Investigation with Swift BAT Gamma-ray Bursts, The Astrophysical Journal, 2010.

Band, D. et al. BATSE Observations of Gamma-Ray Burst Spectra. I. Spectral Diversity, astrophysics Journal, 413-281, 1993.


  • There are currently no refbacks.

Copyright (c) 2016 TECCIENCIA