Comparative Analysis between a Discrete Spiral Chamber and a Continuous Spiral Chamber via ANSYS

Carlos Andres Sanchez Rios, Jhonathan Graciano Uribe, Sebastian Velez Garcia, Diego Andres Hincapie Zuluaga


Hydraulic turbines have been elements of utmost importance to meet the energy needs of communities worldwide. These are used with elements that improve the flow behavior of water to the turbine so that its energy benefits are improved. Spiral chambers are circular elements where their cross-section is constantly changing and are used in reaction turbines, such as Francis turbines. Their main function is to distribute evenly the fluid into the impeller inlet. This paper sought to use engineering simulation tools (ANSYS - CFX) to compare behavior and performance from a discreet continuous spiral chamber in a virtual environment under the same physical operating conditions, providing a comparative view of the performance present between the two manufacturing methods of spiral chambers

Full Text:




C. Mataix, Ed., Turbomáquinas hidráulicas: turbinas hidráulicas, bombas, ventiladores, 3rd ed. Madrid: ICAI, Editorial, 1975.

S. J. Williamson, B. H. Stark, and J. D. Booker, “Low head pico hydro turbine selection using a multi-criteria analysis,” Renew. Energy, vol. 61, pp. 43–50, Jan. 2014.

J. D. Canales Rivas, Antonio José; Mariona Gómez, “Métodos de diseño hidráulico de turbinas francis para pequeñas centrales hidroeléctricas,” UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEON CAÑAS, 2014.

H.-J. Choi, M. A. Zullah, H.-W. Roh, P.-S. Ha, S.-Y. Oh, and Y.-H. Lee, “CFD validation of performance improvement of a 500 kW Francis turbine,” Renew. Energy, vol. 54, pp. 111–123, Jun. 2013.


A. M. Fuller and K. V. Alexander, “Exit-flow velocity survey of two single-tangential-inlet vaneless turbine volutes,” Exp. Therm. Fluid Sci., vol. 35, no. 1, pp. 48–59, Jan. 2011.

P. K. Maji and G. Biswas, “Three-dimensional analysis of flow in the spiral casing of a reaction turbine using a differently weighted Petrov Galerkin method,” Comput. Methods Appl. Mech. Eng., vol. 167, no. 1–2, pp. 167–190, Dec. 1998.

H. Zhu, R. Zhang, G. Luo, and B. Zhang, “Investigation of Hydraulic Characteristics of a Volute-type Discharge Passage based on CFD,” Procedia Eng., vol. 28, pp. 27–32, 2012.

G. A. Aggidis and A. Židonis, “Hydro turbine prototype testing and generation of performance curves: Fully automated approach,” Renew. Energy, vol. 71, pp. 433–441, Nov. 2014.

X. PENG, Z. YANG, S. LIU, and X. JU, “Equivalent pipe algorithm for metal spiral casing and its application in hydraulic transient computation based on equiangular spiral model,” J. Hydrodyn. Ser. B, vol. 26, no. 1, pp. 137–143, Feb. 2014.

L. Wang and D. Wei, “The Optimum Structural Design for Spiral Case in Hydraulic Turbine,” Procedia Eng., vol. 15, pp. 4874–4879, Jan. 2011.

P. Newton, C. Copeland, R. Martinez-Botas, and M. Seiler, “An audit of aerodynamic loss in a double entry turbine under full and partial admission,” Int. J. Heat Fluid Flow, vol. 33, no. 1, pp. 70–80, Feb. 2012.

Ansys®, «11.1.1. Discretization of the Governing Equations», 2014.

Blazek Jiri, de Computational Fluid Dynamics: Principles and Applications, Waltham: Helselvier, 2015.M. C.

Juan Pablo Mejía Rico, Jonathan Graciano-Uribe, David Steeven Villa, Juan José Arbeláez Toro, Diego Hincapié-Zuluaga, Estudio computacional fluido dinámico de cámaras en espiral aplicadas a la generación de energía hidráulica a micro escala, X CONGRESO COLOMBIANO DE MÉTODOS NUMÉRICOS: Simulación en Ciencias y Aplicaciones Industriales, 2013.

Henry, Pierre, Turbomachines Hydrauliques, Presses Polytechniques et Universitaires, Romandes, Suiza; 1992.



  • There are currently no refbacks.

Copyright (c) 2017 TECCIENCIA