Degradación del Cianuro de Efluente minero usando dos reactivos: metabilsulfito de sodio y la mezcla metabisulfito con peróxido de hidrógeno

Gonzalo Aranguri LLerena, Iván Alberto Reyes López

Abstract


El cianuro (CN-) es uno de los reactivos ampliamente usados en diferentes industrias, como la textil, agricultura, joyería, la medicina, la galvanoplastia, la industria del acero, en el procesamiento de minerales etc. Sin embargo las emisiones industriales, que contienen CN- tienen que ser tratadas para cumplir con las regulaciones ambientales. Esta investigación tuvo como objetivo degradar el cianuro libre (CNL) de un relave en pulpa, de una industria metalúrgica de lixiviación por cianuración de minerales auríferos, usando dos reactivos oxidantes en medio acuoso: el metabisulfito de sodio (Na2S2O5) y una combinación metabisulfito de sodio con peróxido de hidrógeno (Na2S2O5+H2O2), para explorar la posibilidad de aplicarlo industrialmente. Se utilizó un diseño factorial con tres variables independientes: tiempo de agitación, porcentaje en exceso de reactivo, tipo de reactivo y una variable dependiente: degradación del CNL (mg/L). Se observó que la cinética de la degradación de CNL, incrementa con el tiempo de agitación y el % de exceso de reactivo así como,  el porcentaje máximo de degradación del CNL (97,67%), ocurre a 400% de exceso de Na2S2O5 con 4 horas de agitación, contrariando el supuesto, que la máxima degradación ocurriría con la mezcla homogénea de Na2S2O5+H2O2 y los mismos parámetros anteriores, con la cual se obtuvo un porcentaje de degradación de 94,87%. De acuerdo al análisis de varianza (ANOVA), las variables influyeron significativamente en la degradación del CNL.


Keywords


Cianuro; degradación del cianuro; destrucción del cianuro; diseño factorial; exceso estequiométrico; lixiviación

References


M. J. Logsdon, K. Hagelstein and T. I. Mudder, "The mananement of cyanide in gold extraction," Ottawa, Ontario, Canadá, 2001.

D. Naveen, C. B. Majumder , P. Mondal and D. Shubha, "Biological treatment of cyanide containing wastewater," Research Journal of Chemical Sciences, vol. 1, no. 7, pp. 15-21, 2011.

N. Kuyucak and A. Akcil, "Cyanide and removal options from effluents in gold mining and metallurgical processes," Minerals Engineering, vol. 50, no. 51, p. 13–29, 2013.

M. Arbabi, N. Masoudipour and M. Amiri, "Negative effects of cyanide on health and its removal options from industrial wastewater," International Journal of Epidemiologic Research, vol. 2, no. 1, pp. 44-49, 2015.

J. Azamat and A. Khataee, "Molecular dynamics simulations of removal of cyanide from aqueous solution using boron nitride nanotubes," Computational Materials Science, vol. 128, pp. 8-14, 2017.

G. Moussavi, M. Pourakbar, . E. Aghayani, . M. Mahdavianpour and . S. Shekoohyian, "Comparing the efficacy of VUV and UVC / S2O8 2− advanced oxidation processes for degradation and mineralization of cyanide in wastewater," Chemical Engineering Journal, vol. 294, no. 15, pp. 273-278, 2016.

D. Y. Tsunatu, U. . H. Taura and E. U. Jirah, "Kinetic studies of bio-sorption of cyanide ions from aqueous solution using carbon black developed from shea butter seed husk as an adsorbent," American Chemical Science Journal, vol. 8, no. 2, pp. 1-12, 2015.

E. S. Aazam, "Environmental remediation of cyanide solutions by photocatalytic oxidation using Au/CdS nanoparticles," Journal of Industrial and Engineering Chemistry, vol. 20, no. 5, pp. 2870-2875, 2014.

M. M. Botz, T. H. Mudder and A. U. Akcil, "Cyanide treatment: Physical, chemical and biological processes," Developments in Mineral Processing, vol. 15, pp. 672-702, 2005.

L. A. C. Teixeira, J. . P. Montalvo Andia, L. Yokoyama, F. . V. Fonseca Araújo and C. Marquez Sarmiento, "Oxidation of cyanide in effluents by Caro’s Acid," Minerals Engineering, vol. 45, pp. 81-87, 2013b.

S. Tian, Y. Lib and X. Zhao, "Cyanide removal with a copper/active carbon combined oxidation of a Fenton-like reaction and in situ generated copper oxides at anode," Electrochimica Acta, vol. 180, pp. 746-755, 2015.

Y. Zheng, Z. Li, X. Wang, X. Gao and C. Gao, "The treatment of cyanide from gold mine effluent by a novel five compartment electrodialysis," Electrochimica Acta, vol. 169, pp. 150 - 158, 2015.

S. Hanela, J. Durán and S. Jacobo, "Removal of iron–cyanide complexes from wastewaters by combined UV–ozone and modified zeolite treatment," Journal of Environmental Chemical Engineering, vol. 3, pp. 1794 - 1801, 2015.

M. Hijosa-Valsero, R. Molina, H. Schikora, M. Müller and J. M. Bayona, "Removal of cyanide from water by means of plasma discharge technology," water research, vol. 47, pp. 1701 - 1707, 2013.

A. Valiuniene, G. Baltrunas, V. Kersulyte, Z. Margarian and G. Valincius, "The degradation of cyanide by anodic electrooxidation using different anode materials," Process Safety and Environmental Protection, vol. 91, pp. 269 -274, 2013.

L. . A. C. Teixeira, M. T. Churampi Arellano, C. Marquez Sarmiento, L. Yokoyama and F. V. Fonseca Araujo, "Oxidation of cyanide in water by singlet oxygen generated by the reaction between hydrogen peroxide and hypochlorite," Minerals Engineering, vol. 50, no. 51, pp. 57-63, 2013a.

O. Alonso-González, F. Nava-Alonso, C. Jimenez-Velasco and A. Uribe-Salas, "Copper cyanide removal by precipitation with quaternary ammonium salts," Minerals Engineering, vol. 42, pp. 43-49, 2013.

A. R. Yeddou, S. Chergui, A. Chergui, F. Halet, A. Hamza, B. Nadjemi, A. Ould-Dris and J. Belkouch, "Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon," Minerals Engineering, vol. 24, p. 788–793, 2011.

A. I. Vogel, Text Book Of Quantitative Chemical Analysis, 5ta ed., G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Eds., Londres: Longman Group UK Limite, 1989, p. 358.

A. E. Greenberg, L. S. Clesceri and A. D. Eaton, APHA Method 4500-CN: Standard Methods for the Examination of Water an Wastewater, 18 th ed., vol. 4, M. H. H. Franson, Ed., Washington: American Public Health Association, 1992, p. 24.

A. Akcil, "Destruction of cyanide in gold mill effluents: biological versus chemical treatments," Biotechnology Advances, vol. 21, pp. 501-511, 2003.

M. Kitis, A. Akcil, E. Karakaya and N. O. Yigit, "Destruction of cyanide by hydrogen peroxide in tailings slurries from low bearing sulphidic gold ores," Minerals Engineering, vol. 18, pp. 353-362, 2005.

S. Tian, Y. Li, H. Zeng, W. Guan, Y. Wang and X. Zhao, "Cyanide Oxidation by Singlet Oxygen Generated via Reaction between H2O2 from Cathodic Reduction and OCl- from Anodic Oxidation," Journal of Colloid and Interface Science, vol. 482, no. 15, pp. 205-211, 2016.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 TECCIENCIA