Programming of Job Shop Production Systems with Fuzzy Logic

Luis Eduardo Leguizamon Castellanos

Abstract


This article proposes a decision-making algorithm based on the "fuzzy logic" as an optimization technique, which allows to find a good solution to the problem of determining the priority (sequencing) of service or manufacture of jobs in the programming of intermittent production systems, Job Shop. The combinatorial nature and complexity of the problem motivates the exploration of other alternatives solutions to the traditionally used. Initially, the fuzzy logic controller structure (number of input variables, rules and output) is determined in accordance with the objective functions to be optimized. Triangular membership functions are selected for the batch size, the delivery date, the processing time, the number of tools required in each operation, and the priority of the processing the jobs. The fuzzy rules base is defined, and the controller model is formulated (fuzzification, evaluation and defuzzification). The algorithm is developed in Matlab’s ®Simulink ®Fuzzy logic toolbox, achieving better results than those obtained with other methods.


Keywords


Lógica difusa; Secuenciación job shop

References


L. E. Leguizamón Castellanos, «Programación de las actividades logísticas con algoritmos genéticos,» Bogotá DC, 2013.

E. Alexander Alberto Correa Espinal, «Secuenciación de operaciones para configuraciones de planta tipo flexible Job Shop: Estado del arte ,» Revista Avances en Sistemas e Informática., vol. 5, nº 3, p. 11, 04 Febrero 2008.

R. L. J. Daniel Sipper, Planeación y control de la producción, México, D.F.: McGraw-Hill, 1998.

M. L. Pinedo, Scheduling Theory, Algorithms, and Systems, New York: Springer, 2012.

O. A. y. S. K. O. Bilkay, «job shop scheduling using fuzzy logic,» The International Journal of Advanced Manufacturing Technology, vol. 23, pp. 606-619, 2004.

S. Y. Kevin M. Passino, Fuzzy Control, California: Addison Wesley Longman, 1998.

A. S. M. Bonifacio Martin del Brio, Redes Neuronales y Sistemas Difusos, México, D.F: Alfaomega Grupo Editor, S.A, 2002.

V. J. M. José R. Hilera, Redes Neuronales Artificiales., Santafé de Bogotá: Alfaomega, S.A, 2000.

The Math Works, Inc, Fuzzy Logic Toolbox User´s Guide, Natick: 3 Apple Hill Drive, 2017.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 TECCIENCIA