Stability performance of quantum square-shaped extended source P-N-P-N TFET with silicon carbide substrate by means of a physics-based analytical model

Masoud Sabaghi


In this paper, for the first time, an analytical stability model for quantum square-shaped extended source P-N-P-N tunneling field-effect transistor (P-N-P-N TFET) with silicon carbide substrate is developed that includes the effects of gate-source capacitance, gate-drain capacitance, effective gate resistance, time constant and transconductance. A nonquasistatic RF small-signal model has been used and stability that was extracted from analytical equations of its Y-parameters. The obtained analytical expression for stability is compared with device simulation results and excellent agreement is found up to 100 GHz. The stability performance of a quantum square-shaped extended source P-N-P-N TFET with silicon carbide substrate is also studied analytically considering pocket width and doping variation. The results strongly confirm that the proposed model is accurate and suitable for the quantum square-shaped extended source P-N-P-N TFET in the high-frequency regime.


Analytical modeling; Nonquasistatic (NQS); Quantum extended source, stability; silicon carbide; P-N-P-N Tunneling field-effect transistor (P-N-P-N TFET).

Full Text:



A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches,” Nature, Vol. 479, No. 7373, pp. 329-337, 2011.

B. Rajamohanan, D. Mohata, A. Ali and S. Datta, “Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction Tunnel-FETs,” Solid State Electron., Vol. 83, pp. 50-55, 2013.

T. A. Ameen, , H. Ilatikhameneh, P. Fay, A. Seabaugh, R. Rahman and G. Klimeck, “Alloy Engineered Nitride Tunneling Field-Effect Transistor: A Solution for the Challenge of Heterojunction TFETs,” IEEE Trans. Electron Devices, Vol. 66, No. 1, pp. 736-742, 2019.

K. Boucart and A. M. Ionescu, “Double-gate tunnel FET with high-k gate dielectric,” IEEE Trans. Electron Devices, Vol. 54, No. 7, pp. 1725-1733, 2007.

B. Dorostkar and S. Marjani, “DC Analysis of p-n-p-n tunneling field-effect transistor based on In0.35Ga0.65As,” HOLOS, vol. 34, no. 1, pp. 288–296, 2018.

S. Marjani, S. Khosroabadi and S. E. Hosseini, “Enhanced characteristics of square-shaped extended source TFET via silicon carbide polytype (3C-SiC) and a dopant pocket layer,” Orient. J. Chem., vol. 33, no. 3, pp. 1083–1089, 2017.

A. Vallett, S. Minassian, P. Kaszuba, S. Datta, J. Redwing and T. Mayer, “Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors,” Nano let., Vol. 10, No. 10, pp. 4813-4818, 2010.

G. Dewey, B. Chu-Kung, J. Boardman, JM. Fastenau, J. Kavalieros, WK. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, HW. Then and R. Chau, “Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep subthreshold swing”, in IEEE international electron device meeting (IEDM), Washington, DC, USA, pp. 5-7, 2011.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, L. A. Ponomarenko, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science, Vol. 335, No. 6071, pp. 947-950, 2012.

B. Dorostkar, M. Mahoodi and S. Marjani, “Design and simulation of tunnel field effect transistor based on Al0.25Ga0.75As,” The 2nd Electrical and Computer, Conference on Innovative Researches Development (ECCIRD), Torbat-e Jam, Iran, pp. 1–3, 2019.

M. Mahoodi, S. Marjani and B. Dorostkar, “Radio-Frequency Modeling of Double and Single Gate TFETs with Silicon Carbide Polymer,” The 2nd Electrical and Computer, Conference on Innovative Researches Development (ECCIRD), Torbat-e Jam, Iran, pp. 1–3, 2019.

S. Richter, C. Sandow, A. Nichau, S. Trellenkamp, M. Schmidt, R. Luptak, K. K. Bourdelle, Q. T. Zhao, and S. Mantl, “Ω-Gated silicon and strained silicon nanowire array tunneling FETs,” IEEE Electron Device Lett., Vol. 33, No. 11, pp. 1535-1537, 2012.

A. Mallik and A. Chattopadhyay, “Tunnel field-effect transistors for analog/mixed signal system-on-chip applications,” IEEE Trans. Electron Devices, Vol. 59, No. 4, pp. 888-894, 2012.

S. Marjani, S. E. Hosseini and R. Faez, “A silicon doped hafnium oxide ferroelectric p–n–p–n SOI tunneling field–effect transistor with steep subthreshold slope and high switching state current ratio,” AIP Advances, vol. 6, no. 9,pp. 095010-1–095010-7, 2016.

S. Marjani, S. E. Hosseini and R. Faez, “A 3-D analytical modeling of tri-gate tunneling field-effect transistors,” J. Comput. Electron., vol. 15, no. 3, pp. 820–830, 2016.

Y. Yang, P. Guo, G. Han, K. L. Low, C. Zhan and Y.-C. Yeo, “Simulation of tunneling field-effect transistors with extended source structures,” J. Appl. Phys., Vol. 111, pp. 114514-1– 114514-8, 2012.

L. Lattanzio, N. Dagtekin, L. D. Michielis and A. M. Ionescu, “On the static and dynamic behavior of the germanium electron-hole bilayer tunnel FET” IEEE Trans. Electron Devices, Vol. 59, No. 11, pp. 2932- 2938, 2012.

K-T. Lam, X. Cao, and J. Guo, “Device Performance of Heterojunction Tunneling Field-Effect Transistors Based on Transition Metal Dichalcogenide Monolayer,” IEEE Electron Device Lett., Vol. 34, No. 10, pp. 1331-1333, 2013.

K. Kao, A. S. Verhulst, W. G. Vandenberghe and K. De Meyer, “Counterdoped pocket thickness optimization of gate-on-source-only tunnel FETs,” IEEE Trans. Electron Devices, Vol. 60, No. 1, pp. 6-12, 2013.

S. Marjani and S. E. Hosseini, “Radio-frequency modeling of square-shaped extended source tunneling field-effect transistors,” Superlattices and Microstructures, Vol. 76, pp. 297-314, 2014.

G. B. Beneventi, E. Gnani, A. Gnudi, S. Reggiani and G. Baccarani, “Dual-metal-gate InAs tunnel FET with enhanced turn-on steepness and high on-current,” IEEE Trans. Electron Devices, Vol. 61, No. 3, pp. 776-784, 2014.

S. Marjani and S. E. Hosseini, “A novel double gate tunnel field effect transistor with 9 mV/dec average subthreshold slope,” in 22st Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, pp. 399-402, 2014.

S. Marjani and S. E. Hosseini, “RF modeling of p-n-p-n double-gate tunneling field-effect transistors,” presented at the 3rd Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), Tehran, Iran, 2014.

I. Kwon, M. Je, K. Lee and H. Shin, “A simple and analytical parameter-extraction method of a microwave MOSFET,” IEEE Trans. Microwave Theory Tech., Vol. 50, No. 6, pp. 1503-1509, 2002.

S. Marjani and S. E. Hosseini, “Radio-frequency small-signal model of hetero-gate-dielectric p-n-p-n tunneling field-effect transistor including the charge conservation capacitance and substrate parameters,” J. Appl. Phys., vol. 118, no. 9, pp. 095708-1–095708-8, 2015.

V. Dimitrov, J. Heng, K. Timp, O. Dimauro, R. Chan, M. Hafez, J. Feng, T. Sorsch, W. Mansfield, J. Miner, A. Kornblit, F. Klemens, J. Bower, R. Cirelli, E. J. Ferry, A. Taylor, M. Feng, and G. Timp, “Small-Signal Performance and Modeling of sub-50nm nMOSFETs with fT above 460-GHz,” Solid State Electron., Vol. 52, No. 6, pp. 899-908, 2008.

S. Marjani and S. E. Hosseini, “Analyses on radio-frequency modeling of double-and single-gate square-shaped extended source TFETs,” Journal of Electrical Systems and Signals, vol. 3, no. 1, pp. 9–14, 2015.

S. Cho, J. S. Lee, K. R. Kim, B.-G. Park, J. S. Harris, Jr., and I. M. Kang, “Analyses on small-signal parameters and radio-frequency modeling of gate-all-around tunneling field-effect transistors,” IEEE Trans. Electron Devices, Vol. 58, No. 12, pp. 4164-4171, 2011.

ATLAS Device Simulation Software, Silvaco Int., Santa Clara, CA, USA, 2018.

S. Marjani and H. Marjani, “Self-heating effects in a silicon carbide polymers (6H-SiC and 3C-SiC) semiconductor laser,” Asian J. Chem., vol. 24, no. 7, pp. 3145–3147, 2012.

J.M. Rollet, “Stability and power gain invariants of linear two ports,” IRE Trans. Circuit Theory, Vol. 9, pp. 29-32, 1962.



  • There are currently no refbacks.

Copyright (c) 2020 TECCIENCIA