Síntesis de mono di tri acetil gliceroles a partir de glicerina grado técnico

Arnoldo Emilio Delgado Tobón, Esperanza Rodríguez Carmona

Abstract


Mono, di, tri acetil gliceroles (MDTAG) fueron sintetizados a partir de glicerina grado técnico, como alternativa de aprovechamiento para el glicerol generado por la industria del biodiesel. La esterificación a escala de laboratorio, se hizo utilizando ácido acético en relación molar 1/6 (glicerina/a. acético), se añadió tolueno como agente de arrastre para eliminar periódicamente el agua producida durante la reacción. Se utilizó resina de intercambio iónico como catalizador heterogéneo. MDTAG fueron caracterizados utilizando espectroscopía de infrarrojo (FT-IR). El comportamiento a baja temperatura fue analizado por medio de calorimetría diferencial de barrido (DSC). MDTAG obtenidos por vía experimental presentaron excelente desempeño a temperaturas inferiores a 0 ºC. Este resultado permite considerar a los MDTAG como potenciales aditivos para mejorar la fluidez a bajas temperaturas de bases biolubricantes (obtenidas a partir de aceites vegetales modificados).  

 


Keywords


glicerina, mono di tri acetil gliceroles, acetilación, calorimetría, espectroscopía

References


K. Jagadeeswaraiah, “Design of solid catalysts for the selective conversion of glycerol,” Osmania University, 2014.

Y. Jiang, X. Li, H. Zhao, and Z. Hou, “Esterification of glycerol with acetic acid over SO3H-functionalized phenolic resin,” Fuel, vol. 255, no. July, p. 115842, 2019.

H. W. Tan, A. R. A. Aziz, and M. K. Aroua, “Glycerol production and its applications as a raw material : A review,” vol. 27, pp. 118–127, 2013.

Z. I. Ishak, N. A. Sairi, Y. Alias, M. K. T. Aroua, and R. Yusoff, “Production of glycerol carbonate from glycerol with aid of ionic liquid as catalyst,” Chem. Eng. J., vol. 297, pp. 128–138, 2016.

A. Cornejo, I. Barrio, M. Campoy, J. Lázaro, and B. Navarrete, “Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review,” Renew. Sustain. Energy Rev., vol. 79, no. November 2016, pp. 1400–1413, 2017.

P. U. Okoye, A. Z. Abdullah, and B. H. Hameed, “Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst,” Fuel, vol. 209, no. July, pp. 538–544, 2017.

C. S. Carriço, T. Fraga, and V. M. D. Pasa, “Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols,” Eur. Polym. J., vol. 85, pp. 53–61, 2016.

A. B. F. Moreira, A. M. Bruno, M. M. V. M. Souza, and R. L. Manfro, “Continuous production of lactic acid from glycerol in alkaline medium using supported copper catalysts,” Fuel Process. Technol., vol. 144, pp. 170–180, 2016.

Q. (Sophia) He, J. McNutt, and J. Yang, “Utilization of the residual glycerol from biodiesel production for renewable energy generation,” Renew. Sustain. Energy Rev., vol. 71, no. January, pp. 63–76, 2017.

E. Kaya Ekinci and N. Oktar, “Production of value-added chemicals from esterification of waste glycerol over MCM-41 supported catalysts,” Green Process. Synth., vol. 8, no. 1, pp. 128–134, 2019.

F. Cardeño, L. J. Gallego, and L. A. Rios, “Refinación de la fase glicerina del biodiesel de aceite de palma empleando ácidos minerales,” Inf. Tecnol., vol. 22, no. 6, pp. 15–24, 2011.

I. Contreras-Andrade, E. Avella-Moreno, J. F. Sierra-Cantor, C. A. Guerrero-Fajardo, and J. R. Sodré, “Purification of glycerol from biodiesel production by sequential extraction monitored by 1H NMR,” Fuel Process. Technol., vol. 132, pp. 99–104, 2015.

Z. Nanda, M; Yuan, W. Qin, and C. M.A, Poirier; Xu, “Purification of crude glycerol using acidification : effects of acid types and product characterization,” Austin J. Chem. Eng., vol. 1, no. 1, pp. 1–7, 2015.

A. Rodrigues, J. C. Bordado, and R. G. Dos Santos, “Upgrading the glycerol from biodiesel production as a source of energy carriers and chemicals - A technological review for three chemical pathways,” Energies, vol. 10, no. 11, pp. 1–36, 2017.

S. Sadhukhan and U. Sarkar, “Production of purified glycerol using sequential desalination and extraction of crude glycerol obtained during trans-esterification of Crotalaria juncea oil,” Energy Convers. Manag., vol. 118, pp. 450–458, 2016.

M. S. Sinaga, G. Rico, A. N. Nababan, and T. A. Manullang, “Effect of solvent volume ratio and time extraction of glycerol purification,” IOP Conf. Ser. Mater. Sci. Eng., vol. 309, no. 1, pp. 0–6, 2018.

C. G. Chol, R. Dhabhai, A. K. Dalai, and M. Reaney, “Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses,” Fuel Process. Technol., vol. 178, no. May, pp. 78–87, 2018.

I. Banu, G. Bumbac, D. Bombos, S. Velea, A. M. Gălan, and G. Bozga, “Glycerol acetylation with acetic acid over Purolite CT-275. Product yields and process kinetics,” Renew. Energy, vol. 148, pp. 548–557, 2020.

M. Aghbashlo, M. Tabatabaei, H. Jazini, and H. S. Ghaziaskar, “Exergoeconomic and exergoenvironmental co-optimization of continuous fuel additives (acetins) synthesis from glycerol esterification with acetic acid using Amberlyst 36 catalyst,” Energy Convers. Manag., vol. 165, no. January, pp. 183–194, 2018.

M. Aghbashlo, M. Tabatabaei, H. Rastegari, and H. S. Ghaziaskar, “Exergy-based sustainability analysis of acetins synthesis through continuous esterification of glycerol in acetic acid using Amberlyst®36 as catalyst,” J. Clean. Prod., vol. 183, pp. 1265–1275, 2018.

T. Watanabe, M. Sugiura, M. Sato, N. Yamada, and K. Nakanishi, “Diacylglycerol production in a packed bed bioreactor,” Process Biochem., vol. 40, no. 2, pp. 637–643, Feb. 2005.

H. Wepoh, “Synthesis of Triacetin from Glycerol,” no. September, pp. 3–10, 2015.

V. L. C. Gonçalves, B. P. Pinto, J. C. Silva, and C. J. A. Mota, “Acetylation of glycerol catalyzed by different solid acids,” Catal. Today, vol. 133–135, no. 1–4, pp. 673–677, 2008.

S. S. Kale et al., “Understanding the role of Keggin type heteropolyacid catalysts for glycerol acetylation using toluene as an entrainer,” Appl. Catal. A Gen., vol. 527, pp. 9–18, 2016.

H. Li, J. Li, X. Li, and X. Gao, “Esterification of glycerol and acetic acid in a pilot-scale reactive distillation column: Experimental investigation, model validation, and process analysis,” J. Taiwan Inst. Chem. Eng., vol. 89, pp. 56–66, 2018.

L. Zhou, T. H. Nguyen, and A. A. Adesina, “The acetylation of glycerol over amberlyst-15: Kinetic and product distribution,” Fuel Process. Technol., vol. 104, pp. 310–318, 2012.

X. Liao, Y. Zhu, S.-G. Wang, and Y. Li, “Producing triacetylglycerol with glycerol by two steps: Esterification and acetylation,” Fuel Process. Technol., vol. 90, no. 7–8, pp. 988–993, Jul. 2009.

I. Dosuna-Rodríguez and E. M. Gaigneaux, “Glycerol acetylation catalysed by ion exchange resins,” Catal. Today, vol. 195, no. 1, pp. 14–21, 2012.

S. Kale, S. B. Umbarkar, M. K. Dongare, R. Eckelt, U. Armbruster, and A. Martin, “Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer,” Appl. Catal. A Gen., vol. 490, pp. 10–16, 2015.

P. U. Okoye, A. Z. Abdullah, and B. H. Hameed, “A review on recent developments and progress in the kinetics and deactivation of catalytic acetylation of glycerol—A byproduct of biodiesel,” Renew. Sustain. Energy Rev., vol. 74, no. February, pp. 387–401, 2017.

B. O. Dalla Costa, H. P. Decolatti, M. S. Legnoverde, and C. A. Querini, “Influence of acidic properties of different solid acid catalysts for glycerol acetylation,” Catal. Today, vol. 289, pp. 222–230, 2017.

Stuart, B., “Infrared Spectroscopy: Fundamentals and Applications,” John Wiley & Sons, 2004.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 TECCIENCIA