Estudio de la Influencia de la Geometría del Difusor de Entrada en la Operación de un Motor Ramjet por Medio de Software de Dinámica de Fluidos Computacional

Rafael Cerpa, Niyiret Ortiz, Alejandra Portillo


This investigation delivers the results of the study in two dimensions of the influence of the geometry at the entrance of the diffuser of a ramjet engine using the ANSYS-Fluent software. Initially, the isentropic, thermal and gas dynamics flow calculations were performed in order to obtain the ramjet operational parameters; from these results, different geometries at the entrance of the diffuser were proposed, which in this particular case has a central core, whose main function is the generation of oblique shock waves in order to make the diffusion process gradually without generating great amount of losses. The proposed geometries were simulated through the ANSYS -Fluent software in order to know their influence on the isentropic flow behavior. Finally, it was possible to verify that the variation of the wedge angle is given between 7º-14º without affecting the behavior of the ramjet diffuser.


Ramjet, CFD, isentropic flow.

Full Text:



Cerpa, R., Energía y propulsión. Editorial Bonaventuriana, 2019.

J. Mattingly, Elements of gas turbine propulsion. McGraw Hill, 1996.

B. Stechkin and P. Kazandzan, Teoría de los motores de reacción: procesos y características. Dossat, SA,

R. Cerpa, P. Akbari, N. Muller, and J. Piechna, “Numerical analysis of the wave topping unit for small

turbojet,” ASME Turbo Expo American Society ofMechanical Engineers, 2010. DOI: 10.1115/GT2010-23064

R. Cerpa, “Non-conventional methods of gas turbine engine e_ciency,” Editorial Bonaventuriana, 2015.

R. Cerpa, J. Piechna, and N. Muller, Numerical analysis of unsteady e_ects in partial admittance turbine

cooperating with pulse combustion chambers. 50th AIAA/ASME/SAE/ASEE, 2014. DOI: 10.2514/6.2014-

A. Shapiro, Dynamics and thermodynamics of compressible _uid _ow. The Ronald Press Company, 2004.

Y. A. Çengel and M. A. Boles, Termodinámica (8a. McGraw Hill Mexico, 2015.

R. Royce, The jet engine. Rolls Royce PLC, 1996.

H. Savanamutto, C. Rogers, and H. Cohen, “Gas turbine theory,” Harlow: Pearson education, 2001.

C. A. Sánchez-Ríos, J. Graciano-Uribe, S. Vélez García, and D. A. Hincapié-Zuluaga, “Comparative analysis

between a discrete spiral chamber and a continuous spiral chamber via ansys,” Tecciencia, vol. 12, no. 23,

pp. 25–32, 2017. DOI: 10.18180/tecciencia.2017.23.4

J. S. et al., “Análisis aerodinámico de la aeronave usb aero mediante dinámica de _uidos computacional,”

Tecciencia, vol. 15, no. 28, pp. 51–66, 2020. DOI: 10.18180/tecciencia.28.5

A.N.S.Y.S., “Ansys _uent user’s guide,” 2012.

R. Nichols, “Applications of rans/les turbulence models,” 41st Aerospace ScienceMeeting and Exhibit, 2003.

DOI: 10.2514/6.2003-83

B. Debashis, H. Awatef, and D. Kaushik, “Des and hybrid rans/les models for unsteady separated turbulent

_ow predictions,” 41st Aerospace Science Meeting and Exhibit, 2003. DOI: 10.2514/6.2003-83

R. Cerpa, Diseño de un vehículo urbano con bajo consume de combustible. Editorial Bonaventuriana, 2017.

R. Cerpa, J. Piechna, and N. Muller, “Análisis númerico de los efectos atípicos en un rotor de ondas aplicado

a una microturbina,” Ingenium, vol. 20, pp. 5–14„ 2009.

A. Oñate, Turborreactres teoría, sistemas y propulsión de aviones.Sumaas. S.A, 1981.

T. Laube and J. Piechna, “Analytical and numerical feasibility analysis of a contra-rotatory ramjet engine,”

Energies, vol. 13, 2019. DOI: 10.3390/en1310163

M. Brouillette, M. Picard, D. Rancourt, and J. Plante, “Shock-induced combustion and its applications to

power and thrust generation.”

J. Werner, A. Dahm, A. Lapsa, and E. Hamlington, “Inside-out rotary ramjet turbogenerator,” in 4th international

Energy Conversion Engineering Conference and Exhibit, 2006.


  • There are currently no refbacks.

Copyright (c) 2020 TECCIENCIA